Stability estimates and structural spectral properties of saddle point problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability estimates and structural spectral properties of saddle point problems

For a general class of saddle point problems sharp estimates for Babuška’s inf-sup stability constants are derived in terms of the constants in Brezzi’s theory. In the finite-dimensional Hermitian case more detailed spectral properties of preconditioned saddle point matrices are presented, which are helpful for the convergence analysis of common Krylov subspace methods. The theoretical results ...

متن کامل

Sharp Stability and Approximation Estimates for Symmetric Saddle Point Systems

We establish sharp well-posedness and approximation estimates for variational saddle point systems at the continuous level. The main results of this note have been known to be true only in the finite dimensional case. Known spectral results from the discrete case are reformulated and proved using a functional analysis view, making the proofs in both cases, discrete and continuous, less technica...

متن کامل

Nonstandard Norms and Robust Estimates for Saddle Point Problems

In this paper we discuss how to find norms for parameter-dependent saddle point problems which lead to robust (i.e.: parameter-independent) estimates of the solution in terms of the data. In a first step a characterization of such norms is given for a general class of symmetric saddle point problems. Then, for special cases, explicit formulas for these norms are derived. Finally, we will apply ...

متن کامل

Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems

In this paper we derive bounds on the eigenvalues of the preconditioned matrix that arises in the solution of saddle point problems when the Hermitian and skew-Hermitian splitting preconditioner is employed. We also give sufficient conditions for the eigenvalues to be real. A few numerical experiments are used to illustrate the quality of the bounds.

متن کامل

Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems

In this paper, we study the distribution on the eigenvalues of the preconditioned matrices that arise in solving two-by-two block non-Hermitian positive semidefinite linear systems by use of the accelerated Hermitian and skew-Hermitian splitting iteration methods. According to theoretical analysis, we prove that all eigenvalues of the preconditioned matrices are very clustered with any positive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2012

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-012-0507-3